High-Speed NAND Flash

Design Considerations to Maximize Performance

Presented by: Robert Pierce
Sr. Director, NAND Flash
Denali Software, Inc.
The High-Speed NAND offering will have a profound effect on capacity vs. performance as well as BOM.

MLC NAND Multi Plane

40MB/s Theoretical Maximum

MLC NAND

SLC NAND

ONFi 2.X Toggle Mode SCM

Fusion Class Memory
• Multi Die Solutions
• SCM capability with Multi Die

20

60

80

100

200

MB/s
The NAND Flash interface has been a bottleneck in achieving high performance for system applications. As page size increases to 4KB, the SLC tR time of ~20 µs is completely unbalanced with the data transfer time of ~100 µs in legacy/native NAND. High performance applications (i.e. Cache, SSD's, etc.) have been unable to show the true capability for random operations required by today's systems and OS's. Changes to the flash device architecture will have even more effect for these new devices. Page size increases, Multi Plane, Additional Spare area for Metadata, Enhanced commands.
Toggle-based MLC NAND
- Eight controllers
- 4 CE
- 8K page size

Asynchronous MLC NAND
- Eight controllers
- 4 CE
- 8K page size
Key Aspects to Higher Interface Performance Improvements

- Increase the number of commands to the flash device
 - Maximizes the number of transactions for a device
 - Multi-plane architectures are very useful
- Interlacing, by CE or LUN
 - CE interlacing uses more pins
 - Polling mode not as useful
 - LUN (Logical Unit Addressing) very useful, with pin reduction
- Transaction size
 - 8K page size can increase Read BW
Parallelism using Chip Enables

- 4CS Interleave
- 4KB Page size (transfer time is ~30us - 4096*7.5ns)
- Program time ~800us typical
- Dual plane support (T1 is transfer for plane 1 and T2 is transfer for plane 2)

- 860 us Program Cycle = One program time + two transfer times (800+30+30)
- 32 Kbytes data written in one program cycle
- 37 MBps Theoretical max throughput per program cycle
- 20% controller and flash software overhead
- 30 MBps estimated throughput
4CS with LUN Interleave
Two LUNs (0 & 1) per CS
4KB Page size (transfer time is ~30us - 4096*7.5ns)
Program time ~800us typical
Dual plane support (T1 is transfer for plane 1 and T2 is transfer for plane 2)

860 us Program Cycle = One program time + two transfer times (800+30+30)
64 Kbytes data written in one program cycle
74 MBps Theoretical max throughput per program cycle
20% controller and flash software overhead
60 MBps estimated throughput
Achieved twice the throughput with LUN interleaving
The earlier examples were without any interface overhead.

In Reality

- There is idle time required when:
 - we switch between devices, dies during an die-interleaving operation
 - we switch between chip enables during interleaving
- System integrator needs to look at a combination of array performance timing as well as the inter-command idle time to arrive at target achievable performance.
High-Speed Controller Key Features

Key Toggle Features
- 63 and 83 MHz operation
- Multi Plane support
- Multiple I/O voltage
- I/O strength support
- Cache Read/write commands
- Programmable/Erase lockout during power transitions

Key ONFi 2.1 Features
- Discovery and Initialization
- LUN addressing
- Interlaced and non-interlaced addressing
- Source synchronous operation
- Staggered power up
- I/O strength support
- ONFi 1 modes 0,1,2,3,4,5
- ONFi 2 mode support 1,2,3,4,5
Flash Controller HW Architectures

- HW Accelerated Controller
- Software Driven Flash Timing

Key Differences
- Flash command execution
- Interrupts
- Processor overhead
NAND Controller w PHY Support

- **AHB**
 - **Cmd/Data Interface**
 - **Initiator Interface**

- **Async Buffer**

- **DMA**
 - **Command Request**

- **Map 00**
 - **Buff Access**

- **Map 01**
 - **Array Access**

- **Map 10**
 - **Control Access**

- **Map 11**
 - **Direct Access**

- **Sequencer/Status Module**

- **Link Layer**
 - **ONFI 2/Toggle Soft PHY**

- **ECC**
 - **AHB Initiator Interface**
 - **AHB Port Register Interface**

- **Interrupt**
 - **Internal Registers**

- **Command and data**
 - **Interrupt**
 - **Data**
 - **Register Information**
High-Speed NAND Challenges

- New NAND devices (e.g. Toggle NAND, ONFi 2.X) offer tremendous performance improvements over past solutions.
- Using old controller and firmware solutions will be unable to utilize this performance capability.
- Physical interface requires a more defined solution, not only for timing but for legacy support.
 - Multi voltage I/O’s
 - Programmable drive strength
- Latency in the controller will increase buffer overhead.
- Multi page size and ECC options need to be present in all HS applications.
PHY Overview
PHY Architectural Overview

- Separate PLL
 - Use for multiple slices
- Soft PHY slice
 - Highly reusable
 - Flexible layout
- Test Logic for at-speed test
- No DLL reduces power and gate count. 4X clock at IO frequency

- Clock reference
 - Minimally buffered PLL input to slice for source synchronous domain
 - Normal clock tree for DFI, flop-to-flop timing

Available for SOC now, FPGA Support soon.
Soft PHY Solution

- Works with ONFi2 and Toggle as well as legacy flash
- Base design has been verified by DDR DRAM controller
- Process technology agnostic
- Scalable to many multiple channels
- Multiple drive strength support for new H.S device
- No DLL, simplified clocking methodology
 - No 3rd party core IP
 - I/O’s need to be supplied
DQS to DQ valid = tDQSS<.10clk
DQS to DQ invalid = tDH>.38clk
DQS capture at .125clk, .25clk and .375clk
Three valid capture points are available when we need only two for reliable capture because of pattern matching
DQS to DQ valid = $t_{DQSS} < 0.092\text{clk}$
DQS to DQ invalid = $t_{QH} > 0.322\text{clk}$
DQS capture at 0.125clk, 0.25clk and 0.375clk
No read capture points; Reason is t_{DQSS} is larger than 0.125clk with I/O uncertainty normally used for flash (500ps), the second read capture point is valid, the third capture point is never valid
This could be used if I/O uncertainty was less than 0.033clk at 100MHz or 330ps
16 Phase Read Capture Flash

- DQS to DQ valid = tDQSS < 0.092 clk
- DQS to DQ invalid = tQH > 0.322 clk
- DQS capture at 0.125 clk, 0.1875 clk, 0.25 clk and 0.3125 clk
- Four read capture points: the first and last may not be reliable due to I/O uncertainty, but the two middle capture points will always work with pattern matching
Conclusion

- To maximize performance, new architectures and solutions are necessary to achieve the performance that the new High-Speed Flash devices offer.
- High overhead software solutions will have difficulty achieving desired performance levels.
- Trends in the Page size as well as ECC sector size will have an interesting effect for SSD and high capacity flash array applications.
- It is possible to support both Legacy and High-Speed solution with one device.
- The increase in commands and addresses will put more burden on the processor and the Host interface.