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FLASH PATH FORWARD 

• Flash: new media or new architecture 
• Flash Translation Layer Best Practices 
• Optimization examples  

– File Systems 
– Caching 
– Database 

• Developer opportunities 
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FLASH: NEW MEDIA OR 
NEW ARCHITECTURE 

Is GPS technology a new map or new architecture? 
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CONVENTIONAL ARCHITECTURE 

Storage Stack 

Applications and File Systems 

Physical Device Operations 
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STUCK ON DRIVES AND BLOCK I/O 

Storage Stack 

Applications and File Systems 

Physical Device Operations 

Entirety of 
software 
and 
physical 
stacks 
optimized 
for rotating 
disks 

Block I/O 
read() 
write() 
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FLASH ONLY AS A FAST DISK 

Storage Stack 

Applications and File Systems 

Physical Device Operations 

Disk-
centric 
approach 
 
Legacy 
stacks 
remain 

Flash Flash Flash Flash Flash 
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BUT FLASH IS DIFFERENT 

• Asymmetric read/write latencies 
 

• Write-impact on durability 
 

• Unique erase characteristics 



Flash-centric 
approach 

 
Retain 

backwards 
compatibility 

with 
conventional 

block I/O 
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FLASH AS A NEW ARCHITECTURE 

Flash Translation Layer 

Applications and File Systems 

Physical Device Operations Flash Flash Flash Flash Flash 
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FLASH TRANSLATION LAYER 101 

Flash Translation Layer 

Input 
Logical Block Address (LBA) 

Output 
Commands to NAND flash 
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OPTIMIZING SOFTWARE STACKS FOR FLASH 

• Virtualize the storage abstraction layer 
• Provide a large virtual block address space 
• Be backwards compatible with 

conventional block I/O 
• Deliver new capabilities 

– Combine virtualization with intelligent 
translation and allocation strategies; hide bulk 
erasure latencies; perform wear leveling 
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OPTIMIZED FTL 

• Sophisticated 
architecture 
– maximum performance 

• Intelligent software 
– advanced features 
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BENEFITS OF VIRTUAL ADDRESS SPACE 

Large, virtualized, block address space provides: 
 
1. Client software direct access to flash memory 

• single level store fashion 
• across multiple flash memory devices 
 

2. Frees applications and databases from details of virtual 
to physical flash memory pages 
 

3. Flat, virtual block-addressed space is backwards 
compatible with conventional block I/O 
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HOST-CENTRIC APPROACH 

• Cooperate with hardware support 
• Maintain virtual to physical mappings 
• Handle multiple devices 
• Log structured allocation strategy 

– Bulk erasure 
– Wear leveling 
– Bad page recovery 

• Richer interface than currently available 
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BENEFIT OF THE X86 ECOSYSTEM 

http://www.physicsforums.com/showthread.php?t=506828 
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DFS: A FILE SYSTEM FOR VIRTUALIZED 
FLASH STORAGE 

http://www.usenix.org/event/fast10/tech/full_papers/josephson.pdf 



FLASH STORAGE ABSTRACTIONS 
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File System Database … 
Logical Block 

(Physical Size) Ops: Read, Write… 

Traditional Block Storage Layer 
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Write 
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Virtualized Flash Storage Layer 
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DFS 

• Full fledged UNIX file system 
 

• Employ virtualized flash storage layer’s 
– Large virtualized addressed space 
– Direct flash access 
– Crash recovery mechanisms 
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DFS PERFORMANCE 

Device Read IOPS Write IOPS 

Conventional SSD and FTL 33,400 3,120 

Optimized SSD and virtual 
flash storage layer 

98,800 71,000 

http://www.usenix.org/event/fast10/tech/full_papers/josephson.pdf 
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DFS SIMPLICITY – LINES OF CODE 

Module DFS Ext3 
Headers 392 1583 
Kernel Interface (Superblock, etc.) 1625 2973 
Logging 0 7128 
Block Allocator 0 1909 
I-nodes 250 6544 
Files 286 283 
Directories 561 670 
ACLs, Extended Attrs. N/A 2420 
Resizing N/A 1085 
Miscellaneous 175 113 
Total 3289 24708 
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ALL FLASH TRANSLATION LAYERS DO 
GARBAGE COLLECTION 

http://en.wikipedia.org/wiki/Write_amplification#cite_note-L_Smith-5 

 

 

 

 

 

 

 

 

 

 

 

 

1. Four pages (A-D) are written 
to a block (X). Individual pages 
can be written at any time if 
they are currently free (erased) 
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2. Four new pages (E-H) and 
four replacement pages (A’-D’) 
are written to the block (X). 
The original A-D pages are now 
invalid (stale) data, but cannot 
be overwritten until the whole 
block is erased. 
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3. In order to write to the 
pages with stale data (A-D) all 
good pages (E-H & A’-D’) are 
read and written to a new 
block (Y) then the old block (X) 
is erased. This last step is 
garbage collection. 
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INTELLIGENT CACHING LAYER 

Flash Translation Layer 

Applications and File Systems 

Physical Device Operations 

Caching 
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INTEGRATION BENEFITS 

• Flash translation and garbage collection is complex 
• TRIM demonstrates that flash needs information 

from upstream stack to perform efficiently 
• TRIM is only a first step 

 
• Caches maintain intelligence on data 
• Uncoupled caching and FTL layers could be working 

against each other 
• Linking cache intelligence to FTL can improve FTL 

efficiency, write performance, endurance 
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BEYOND BLOCK I/O: RETHINKING 
TRADITIONAL STORAGE PRIMITIVES 

http://www.cse.ohio-state.edu/~zhang/hpca11-submitted.pdf 
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IT IS ABOUT TRANSACTIONS 

• Building block of applications  
and databases 
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TRANSACTION SEMANTICS 

• Data Integrity 
 

• Concurrency 
 

• Crash Recovery 
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TOKEN ACID SLIDE  

• Atomicity 
– Database modifications must follow an "all or nothing" rule 

• Consistency 
– Any transaction the database performs will take it from one 

consistent state to another. 

• Isolation 
– Other operations cannot access data that has been modified 

during a transaction that has not yet completed 

• Durability 
– Ability to recover the committed transaction updates against any 

kind of system failure (hardware or software). 

• http://en.wikipedia.org/wiki/ACID 
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TRANSACTIONAL SEMANTICS APPLY 

Across: 
• Applications 
• File Systems 
• Databases 
• Web Services 
• Search Engines 
• Mission Critical Computing 
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ATOMIC WRITES 

• Batch multiple I/O operations into a 
single logical group 
 

• Multiple I/Os are persisted as a 
whole or rolled back upon failure 



ATOMIC WRITES TODAY 

• Handled by 
– Applications 
– Databases 
– File Systems 

 

• Guarantee the 
consistency and 
integrity of data 

• Databases support 
atomic write 
through 
– Logs 
– Locks 
– Buffers 
– Process 

Management 
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NOT ALL APPLICATIONS THE SAME 

• Many do not fit the RDBMS model 
perfectly 

• Opportunities exist to 
– Optimize efficient access 
– Provide more control 
– Improve application specific data layout 
– Improve application specific data access 

mechanisms 
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ATOMIC WRITE POTENTIAL 

• Leverage underlying, log-based 
Flash Translation Layer 
 

• Reduce load on applications and 
databases 
 

• Simplify Atomic Write execution 
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ATOMIC WRITES – OPTIMIZED 

 DBMS 

Traditional Atomicity 
(with Hard Disks) 

Atomicity 
Trans Log Applications 

  FileSystem 
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INITIAL DEMONSTRATION 

• MySQL and InnoDB 
 

• Early testing 
– 33% speedups to TPC-C and TPC-H 
– Reduced write bandwidth requirement 

by 43% 
– Increased endurance with write 

reduction 
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FLASH MERITS A NEW SOFTWARE 
ARCHITECTURE 

• Host-based FTLs integrate and scale with 
applications, examples include 
– File Systems 
– Caching 
– Databases 

• Power of FTL no longer restricted by 
traditional block interfaces 

• Opportunity for performance, simplicity 
and reliability improvements 



T H A N K   Y O U 

For more 

go@fusionio.com 

www.fusionio.com 
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