
Gary Orenstein, VP of Products, @garyorenstein

Optimizing I/O Operations via the Flash Translation Layer

Fusion-io Confidential 2 August 8, 2011

FLASH PATH FORWARD

• Flash: new media or new architecture
• Flash Translation Layer Best Practices
• Optimization examples

– File Systems
– Caching
– Database

• Developer opportunities

Fusion-io Confidential 3 August 8, 2011

FLASH: NEW MEDIA OR
NEW ARCHITECTURE

Is GPS technology a new map or new architecture?

Fusion-io Confidential 4 August 8, 2011

CONVENTIONAL ARCHITECTURE

Storage Stack

Applications and File Systems

Physical Device Operations

Fusion-io Confidential 5 August 8, 2011

STUCK ON DRIVES AND BLOCK I/O

Storage Stack

Applications and File Systems

Physical Device Operations

Entirety of
software
and
physical
stacks
optimized
for rotating
disks

Block I/O
read()
write()

Fusion-io Confidential 6 August 8, 2011

FLASH ONLY AS A FAST DISK

Storage Stack

Applications and File Systems

Physical Device Operations

Disk-
centric
approach

Legacy
stacks
remain

Flash Flash Flash Flash Flash

Fusion-io Confidential 7 August 8, 2011

BUT FLASH IS DIFFERENT

• Asymmetric read/write latencies

• Write-impact on durability

• Unique erase characteristics

Flash-centric
approach

Retain

backwards
compatibility

with
conventional

block I/O

Fusion-io Confidential 8 August 8, 2011

FLASH AS A NEW ARCHITECTURE

Flash Translation Layer

Applications and File Systems

Physical Device Operations Flash Flash Flash Flash Flash

Fusion-io Confidential 9 August 8, 2011

FLASH TRANSLATION LAYER 101

Flash Translation Layer

Input
Logical Block Address (LBA)

Output
Commands to NAND flash

Fusion-io Confidential 10 August 8, 2011

OPTIMIZING SOFTWARE STACKS FOR FLASH

• Virtualize the storage abstraction layer
• Provide a large virtual block address space
• Be backwards compatible with

conventional block I/O
• Deliver new capabilities

– Combine virtualization with intelligent
translation and allocation strategies; hide bulk
erasure latencies; perform wear leveling

Fusion-io Confidential 11 August 8, 2011

OPTIMIZED FTL

• Sophisticated
architecture
– maximum performance

• Intelligent software
– advanced features

Kernel

File System

Virtual Storage Layer (VSL)

Flash Device(s)

Applications/Databases PCIe

Host

Flash
Device

DRAM /
Memory /
Operating System and
Application Memory

Channels Wide

Ba
nk

s

M
ap

pi
ng

Ta

bl
es

Flash Translation Layer

Data
Transfers Commands

Flash Controller

CPU
CPU

CPU

Fusion-io Confidential 12 August 8, 2011

BENEFITS OF VIRTUAL ADDRESS SPACE

Large, virtualized, block address space provides:

1. Client software direct access to flash memory

• single level store fashion
• across multiple flash memory devices

2. Frees applications and databases from details of virtual
to physical flash memory pages

3. Flat, virtual block-addressed space is backwards
compatible with conventional block I/O

Fusion-io Confidential 13 August 8, 2011

HOST-CENTRIC APPROACH

• Cooperate with hardware support
• Maintain virtual to physical mappings
• Handle multiple devices
• Log structured allocation strategy

– Bulk erasure
– Wear leveling
– Bad page recovery

• Richer interface than currently available

Fusion-io Confidential 14 August 8, 2011

BENEFIT OF THE X86 ECOSYSTEM

http://www.physicsforums.com/showthread.php?t=506828

Fusion-io Confidential 15 August 8, 2011

Fusion-io Confidential 16 August 8, 2011

DFS: A FILE SYSTEM FOR VIRTUALIZED
FLASH STORAGE

http://www.usenix.org/event/fast10/tech/full_papers/josephson.pdf

FLASH STORAGE ABSTRACTIONS

Fusion-io Confidential 17 August 8, 2011

File System Database …
Logical Block

(Physical Size) Ops: Read, Write…

Traditional Block Storage Layer

Sector Read
Write

Sector Read
Write

Solid State Disk

FTL (Remapping)

Block
Erase

Page
Read

Page
Write

NAND Flash Memory

…

…

…

Page
Page

Block

Solid State Disk

FTL (Remapping)

Block
Erase

Page
Read

Page
Write

NAND Flash Memory

…

…

…

Page
Page

Block …

DFS Traditional
File System …

Virtual Block
(64-bit Block Address) Ops: Read, Write, Deallocate

Virtualized Flash Storage Layer
(Remapping, Wear-Leveling, Reliability)

Block
Erase

Page
Read, Write

Enhanced Flash

Controller

NAND Flash Memory

…

…

…

Page
Page

Block

Enhanced Flash

Controller

Buffer and Log

NAND Flash Memory

…

…

…

Page
Page

Block …

Traditional
Database

Block
Erase

Page
Read, Write

Buffer and Log

Fusion-io Confidential 18 August 8, 2011

DFS

• Full fledged UNIX file system

• Employ virtualized flash storage layer’s
– Large virtualized addressed space
– Direct flash access
– Crash recovery mechanisms

Fusion-io Confidential 19 August 8, 2011

DFS PERFORMANCE

Device Read IOPS Write IOPS

Conventional SSD and FTL 33,400 3,120

Optimized SSD and virtual
flash storage layer

98,800 71,000

http://www.usenix.org/event/fast10/tech/full_papers/josephson.pdf

Fusion-io Confidential 20 August 8, 2011

DFS SIMPLICITY – LINES OF CODE

Module DFS Ext3
Headers 392 1583
Kernel Interface (Superblock, etc.) 1625 2973
Logging 0 7128
Block Allocator 0 1909
I-nodes 250 6544
Files 286 283
Directories 561 670
ACLs, Extended Attrs. N/A 2420
Resizing N/A 1085
Miscellaneous 175 113
Total 3289 24708

Fusion-io Confidential 21 August 8, 2011

Fusion-io Confidential 22 August 8, 2011

ALL FLASH TRANSLATION LAYERS DO
GARBAGE COLLECTION

http://en.wikipedia.org/wiki/Write_amplification#cite_note-L_Smith-5

1. Four pages (A-D) are written
to a block (X). Individual pages
can be written at any time if
they are currently free (erased)

free free

free free free

free free free

free free free

free free free

free free free

free free free

Bl
oc

k
X

Bl
oc

k
Y

A B C

D

2. Four new pages (E-H) and
four replacement pages (A’-D’)
are written to the block (X).
The original A-D pages are now
invalid (stale) data, but cannot
be overwritten until the whole
block is erased.

free free free

free free free

free free free

free free free
Bl

oc
k

X
Bl

oc
k

Y

D

A B C

E F

G H A’

B’ C’ D’

3. In order to write to the
pages with stale data (A-D) all
good pages (E-H & A’-D’) are
read and written to a new
block (Y) then the old block (X)
is erased. This last step is
garbage collection.

free free free

free free free

free free free

free free free

Bl
oc

k
X

Bl
oc

k
Y E F

G H A’

B’ C’ D’

free free free

free

Fusion-io Confidential 23 August 8, 2011

INTELLIGENT CACHING LAYER

Flash Translation Layer

Applications and File Systems

Physical Device Operations

Caching

Fusion-io Confidential 24 August 8, 2011

INTEGRATION BENEFITS

• Flash translation and garbage collection is complex
• TRIM demonstrates that flash needs information

from upstream stack to perform efficiently
• TRIM is only a first step

• Caches maintain intelligence on data
• Uncoupled caching and FTL layers could be working

against each other
• Linking cache intelligence to FTL can improve FTL

efficiency, write performance, endurance

Fusion-io Confidential 25 August 8, 2011

Fusion-io Confidential 26 August 8, 2011

BEYOND BLOCK I/O: RETHINKING
TRADITIONAL STORAGE PRIMITIVES

http://www.cse.ohio-state.edu/~zhang/hpca11-submitted.pdf

Fusion-io Confidential 27 August 8, 2011

IT IS ABOUT TRANSACTIONS

• Building block of applications
and databases

Fusion-io Confidential 28 August 8, 2011

TRANSACTION SEMANTICS

• Data Integrity

• Concurrency

• Crash Recovery

Fusion-io Confidential 29 August 8, 2011

TOKEN ACID SLIDE 

• Atomicity
– Database modifications must follow an "all or nothing" rule

• Consistency
– Any transaction the database performs will take it from one

consistent state to another.

• Isolation
– Other operations cannot access data that has been modified

during a transaction that has not yet completed

• Durability
– Ability to recover the committed transaction updates against any

kind of system failure (hardware or software).

• http://en.wikipedia.org/wiki/ACID

Fusion-io Confidential 30 August 8, 2011

TRANSACTIONAL SEMANTICS APPLY

Across:
• Applications
• File Systems
• Databases
• Web Services
• Search Engines
• Mission Critical Computing

Fusion-io Confidential 31 August 8, 2011

ATOMIC WRITES

• Batch multiple I/O operations into a
single logical group

• Multiple I/Os are persisted as a
whole or rolled back upon failure

ATOMIC WRITES TODAY

• Handled by
– Applications
– Databases
– File Systems

• Guarantee the
consistency and
integrity of data

• Databases support
atomic write
through
– Logs
– Locks
– Buffers
– Process

Management

Fusion-io Confidential 32 August 8, 2011

Fusion-io Confidential 33 August 8, 2011

NOT ALL APPLICATIONS THE SAME

• Many do not fit the RDBMS model
perfectly

• Opportunities exist to
– Optimize efficient access
– Provide more control
– Improve application specific data layout
– Improve application specific data access

mechanisms

Fusion-io Confidential 34 August 8, 2011

ATOMIC WRITE POTENTIAL

• Leverage underlying, log-based
Flash Translation Layer

• Reduce load on applications and
databases

• Simplify Atomic Write execution

Fusion-io Confidential 35 August 8, 2011

ATOMIC WRITES – OPTIMIZED

 DBMS

Traditional Atomicity
(with Hard Disks)

Atomicity
Trans Log Applications

 FileSystem
Atomicity

Metadata Journaling,
Copy-on-Write

Block IO Layer

Disk Drive

Sector Read/Write

Traditional Atomicity
(with SSD)

Applications

 FileSystem
Atomicity

Metadata Journaling,
Copy-on-Write

Block IO Layer

 Solid State
 Disk

Sector Read/Write

Flash Translation Layer
Re-mapping Wear-Leveling

 DBMS
Atomicity

Trans Log

NAND Flash Memory

Block Erase Page Read Page Write

Proposed Atomicity in SSS

Applications

Generalized Solid State Storage Layer

 DBMS

File
System Block IO Layer

Re-mapping Wear-Leveling
Atomic-Write

Block Erase Page Read/Write

 Solid State Storage

NAND Flash Memory

Controller

Moving the Atomic-Write Primitive into Storage Stack

Fusion-io Confidential 36 August 8, 2011

INITIAL DEMONSTRATION

• MySQL and InnoDB

• Early testing
– 33% speedups to TPC-C and TPC-H
– Reduced write bandwidth requirement

by 43%
– Increased endurance with write

reduction

Fusion-io Confidential 37 August 8, 2011

Fusion-io Confidential 38 August 8, 2011

FLASH MERITS A NEW SOFTWARE
ARCHITECTURE

• Host-based FTLs integrate and scale with
applications, examples include
– File Systems
– Caching
– Databases

• Power of FTL no longer restricted by
traditional block interfaces

• Opportunity for performance, simplicity
and reliability improvements

T H A N K Y O U

For more

go@fusionio.com

www.fusionio.com

	Optimizing I/O Operations via the Flash Translation Layer
	Flash Path Forward
	Flash: New Media or�New Architecture
	Conventional architecture
	Stuck on Drives and Block I/O
	Flash Only as a Fast Disk
	But Flash Is Different
	Flash As a New Architecture
	Flash Translation Layer 101
	Optimizing Software Stacks for Flash
	Optimized FTL
	Benefits of Virtual Address Space
	Host-Centric Approach
	Benefit of the x86 Ecosystem
	Slide Number 15
	DFS: A File System for Virtualized Flash Storage
	Flash storage abstractions
	DFS
	DFS Performance
	DFS Simplicity – Lines of Code
	Slide Number 21
	All Flash Translation Layers do Garbage Collection
	Intelligent Caching Layer
	Integration Benefits
	Slide Number 25
	Beyond Block I/O: Rethinking Traditional Storage Primitives
	It IS ABOUT Transactions
	Transaction Semantics
	Token ACID Slide 
	Transactional Semantics Apply
	Atomic Writes
	Atomic Writes Today
	Not All Applications the Same
	Atomic Write Potential
	Atomic Writes – Optimized
	Initial DEMONSTRATION
	Slide Number 37
	Flash Merits a New Software Architecture
	Slide Number 39

