Opportunities and Challenges of Using Solid State Drives in Large Scale Datacenters

> Badriddine M. Khessib Dileep Bhandarkar **Microsoft Corporation**

Overview

- * SSD Usage Model and Application Classes
- * Cost Model
- * Application Specific Endurance Model
- * Data Retention in the Data Center and end-of-life failure model
- * Other SSD requirements

SSD by the numbers

Storage Type	Size (GB)	Price (\$)	Perf	\$/GB	\$/Perf	Watts	W/GB
DRAM	4	143	1000000	35.75	0.000143	6	1.5
SSD (SLC)	120	1244	10000	10.37	0.1244	2	0.017
SSD (MLC)	160	480	10000	3.00	0.048	2	0.013
SAS(15K)	300	216	200	0.72	1.08	14	0.047
SAS(10K)	300	186	150	0.62	1.24	8	0.027
SAS(7.2K)	2000	293	100	0.15	2.93	5	0.003
SATA(7.2K)	2000	293	100	0.15	2.93	5	0.003

Storage Technologies by the \$

* Hetzler, Steven R. The storage chasm: Implications for the future of HDD and solid state storage. http://www.idema.org. [Online] December 2008. 4

SSD Usage Models

- * HDD Caching
 - Intermediate persistent cache between HDDs and memory
 - * Caches hot HDD pages in SSD
 - * Cost efficient, but ..
 - * Require hardware/software support
- * HDD replacement
 - * Easy to implement but could be too expensive
 - * We have cost model for this approach

The Cost Model (VLDB 2010 TPCTC workshop)

- * HDD: IO is expensive
 - * Cost_{HDD} = IOPS*\$/IOPS_{HDD} + Power_{HDD} * \$/Watt
- * SSD: GB is expensive
 - * Cost_{SSD}= GB*\$/GB_{SSD} + Power_{SSD} * \$/Watt
- * For SSD to be viable:
 - * Cost_{HDD} > Cost_{SSD}
 - * IOD * $\frac{100}{HDD}$ + PD_{Δ} * $\frac{100}{MD}$ + PD_{Δ} * $\frac{100}{MD}$ + $\frac{100}{MD}$

The Cost Model (cont.)

 \Rightarrow IOD * \$/IOPS_{HDD} + PD_{$\Delta$} * \$/Watt > \$/GB_{SSD}

- * IOD: IOPS/GB, workload dependent
- * \$/IOPS_{HDD}: \$1.24
- * PD_{Δ} : 0.01 Watt/GB
- * \$/Watt: \$10
- * \$/GB_{SSD}: \$10.37 SLC & \$3 MLC
- * Solve for IOD:
 - * IOD > 8.28 (SLC)
 - * IOD > 2.34 (MLC)

SSD Usage and Application Classes

	HDD caching	HDD replacement
Commodity Systems	Map/ReduceFile systemECN	 Key/Value Store Web Search
Reliable Systems	 Enterprise OLTP Enterprise DSS 	• ?

SSD is Consumable Storage

- * Apps have to monitor State of SSD
 - * SMART attributes
 - * OS error events
 - * App-level Page Checksums
- * Costing Changes:
 - In enterprise a disk (HDD or SSD) is expected to last 3-4 and should be under warranty for that duration
 - * For SSD Media is not covered with Warranty
 - Extra cost for the end user.

The Cost Model (Revisited)

- * HDD: IO is expensive
 - * Cost_{HDD} = IOPS*\$/IOPS_{HDD} + Power_{HDD} * \$/Watt
- * SSD: GB is expensive
 - * Cost_{SSD}= GB*EF*\$/GB_{SSD}+ Power_{SSD} * \$/Watt
- * EF (Endurance Factor):
 - * App 3-year Writes (GB)/SSD endurance
 - * EF >= 1

SSD Endurance

- * No standard way of specifying endurance
 - Some provide a single number based on certain workload
 - * Some provide sequential and random numbers
- * All are inadequate
 - Ignore IO block sizes
 - * Assume long retention period (1 year)

Example Measured Endurance

Application Specific SSD endurance

Application Centric Endurance Model

SSD Endurance Model

- Find random and sequential SSD endurance for most block sizes: 4KB, 8KB, 16KB, 32KB, 64KB, 128KB, ...,1MB
 - We collect SSD SMART attributes while running the above write workloads
 - * The end result is figuring the write amplification model of the SSD.
- * Disk used: 160GB MLC
 - * 15TB (45TB overprovisioning) random endurance
 - * 380 TB sequential endurance

1 MB Sequential Write

1 MB Sequential Write

- * Based on attribute 226: 785 TB
- * Based on attribute 233: 743 TB
- * OEM spec: ~385 TB.

4 KB Sequential Write

4KB Sequential Write

- * Based on attribute 226: 277 TB
- * Based on attribute 233: 246 TB
- * No OEM spec.

4 KB Random Write

4 KB Random Writes

- * Based on attribute 226: 122 TB
- * Based on attribute 233: 112 TB
- * OEM spec: 15TB

16 KB Random Write

16 KB Random Writes

- * Based on attribute 226: 120 TB
- * Based on attribute 233: 93 TB
- * No OEM spec

Workload IO Characterization

- We use Windows ETW infrastructure to collect Disk IO traces
- * Wrote tools to process those traces and extract:
 - * Read/Write distribution by block size
 - * Randomness
 - * IO density

IO Characterization of an App

Request Size	Total	% Total	Reads	% Read	Writes	% Writes	
6	35860203	100%	3586020 3	100%	0	0.0%	
256	84559	0.0%	0	0.0%	84559	97.3%	
4	1749	0.0%	39	0.0%	1710	2.0%	
32	205	0.0%	0	0.0%	205	0.2%	
28	133	0.0%	0	0.0%	133	0.2%	
8	103	0.0%	0	0.0%	103	0.1%	
24	82	0.0%	0	0.0%	82	0.1%	
12	70	0.0%	0	0.0%	70	0.1%	
16	65	0.0%	0	0.0%	65	0.1%	

Example Measured Endurance

Application Specific SSD endurance

Data Retention in the Data Center

- * Very minimal data retention requirements
- * Days not weeks
 - * Data is replicated across servers and across data centers
 - * If a server is down for few hours, rebuild server
- * Servers always on
- * We want to use SSD post 100% Media wear

End of Life Failure Model

- * Can we push SSD beyond per-spec 100% media wear?
 - Answer is yes, based on our reduced data retention
 - * We already collect all SMART attributes/OS events
 - * Need the right SMART counters to predict "end" of life
 - * Correctable ECC errors
 - * Free blocks/retired blocks.
- * But ...
 - * Certain SSDs will disable writes at 100% media wear
 - Others do not throttle writes but provide no mechanism of detecting true end-of-life

Other Disk Requirements

- * SMART counters:
 - * Must:
 - * % media wear
 - * Host writes (GB)
 - * Like:
 - * Free blocks/retired blocks
 - * FTL writes
 - * ECC corrections
- * No endurance or end of life write throttling
 - Need for guaranteed SLA
- * Secure Erase

Conclusion

- Endurance specification are ineffective and useless for Cloud apps:
 - Proposed a new app-specific endurance model
- Data retention requirement in the cloud is not strong (few hours days max)
 - We need to go beyond 100% media wear to fully ustilize the disk
 - * Need some visibility into the health of the disk (ECC corrections, for example)
- * No throttling at any stage: we need a predictable performance to maintain our SLA
- Rich set of SMART counters will help us monitor and manage SSDs
 - * Standardizing counters will simplify our software