

Power Design Issues in Enterprise SSD

 Power is generally the last thing that the hardware design engineer thinks about.

- Power is generally the last thing that the hardware design engineer thinks about.
- However, It can present some of the biggest head aches:
 - Electrical interfaces are limited in the amount of power available.

- Power is generally the last thing that the hardware design engineer thinks about.
- However, It can present some of the biggest head aches:
 - Electrical interfaces are limited in the amount of power available.
 - Need to Increase Conversion Efficiency
 - Standard & custom formfactors can be highly footprint constrained.

- Power is generally the last thing that the hardware design engineer thinks about.
- However, It can present some of the biggest head aches:
 - Electrical interfaces are limited in the amount of power available.
 - Need to Increase Conversion Efficiency
 - Standard & custom formfactors can be highly footprint constrained.
 - Need to Decrease Power Footprint
 - Switch-Mode DCDC converters ARE a source of noise.

- Power is generally the last thing that the hardware design engineer thinks about.
- However, It can present some of the biggest head aches:
 - Electrical interfaces are limited in the amount of power available.
 - Need to Increase Conversion Efficiency
 - Standard & custom formfactors can be highly footprint constrained.
 - Need to Decrease Power Footprint
 - Switch-Mode DCDC converters ARE a source of noise.
 - Need Low Ripple, Low Radiated EMI, Low Conducted EMI
 - SSD technology is dynamic; power requirements change constantly

- Power is generally the last thing that the hardware design engineer thinks about.
- However, It can present some of the biggest head aches:
 - Electrical interfaces are limited in the amount of power available.
 - Need to Increase Conversion Efficiency
 - Standard & custom formfactors can be highly footprint constrained.
 - Need to Decrease Power Footprint
 - Switch-Mode DCDC converters ARE a source of noise.
 - Need Low Ripple, Low Radiated EMI, Low Conducted EMI
 - SSD technology is dynamic; power requirements change constantly
 - Need Scalable Solutions; Minimize Component variation
 - Time to Market can make winners and losers.

- Power is generally the last thing that the hardware design engineer thinks about.
- However, It can present some of the biggest head aches:
 - Electrical interfaces are limited in the amount of power available.
 - Need to Increase Conversion Efficiency
 - Standard & custom formfactors can be highly footprint constrained.
 - Need to Decrease Power Footprint
 - Switch-Mode DCDC converters ARE a source of noise.
 - Need Low Ripple, Low Radiated EMI, Low Conducted EMI
 - SSD technology is dynamic; power requirements change constantly
 - Need Scalable Solutions; Minimize Component variation
 - Time to Market can make winners and losers.
 - Need Short Power Design Cycle

Converter and Components

Synchronous Buck Switch-Mode DC-DC

There are No Industry Standards

- Each supplier has own proprietary design/materials
 - Core material formulation
 - Winding technique and conductor type
 - Electrode material
 - Baking method

There are No Industry Standards

- Each supplier has own proprietary design/materials
 - Core material formulation
 - Winding technique and conductor type
 - Electrode material
 - Baking method
- Key Metrics
 - DC Loss
 - AC Loss
 - Saturation Characteristic
 - Frequency dependencies/Small signal

There are No Industry Standards

- Each supplier has own proprietary design/materials
 - Core material formulation
 - Winding technique and conductor type
 - Electrode material
 - Baking method
- Key Metrics
 - DC Loss
 - AC Loss
 - Saturation Characteristic
 - Frequency dependencies/Small signal
- Temperature dependencies
 - DC Losses: resistivity
 - AC Losses: skin effect, proximity effect,...
 - Saturation Flux Density

Inductor Characterization

Inductor Characterization

- Impedance Magnitude and Phase vs Frequency
- Inductor Physical Dimension Analysis
- RoHS: Core, Conductor, Electrode Material Composition
- All of this is Different for Every Manufacturer

Inductor Characterization

- •Small Signal Parameters
- •DC Resistance; Variation over Temp, Bias, Load
- DC Power Loss vs Load Current
- AC Power Loss vs Volt Seconds Stress and Temp
- AC Power Loss vs Frequency and Temp
- Series Inductance vs Load Current
- Series Inductance vs Temp
- Impedance Magnitude and Phase vs Frequency
- Inductor Physical Dimension Analysis
- RoHS: Core, Conductor, Electrode Material Composition
- All of this is Different for Every Manufacturer

A Few Words on Capacitors

A Few Words on Capacitors

- Industry Standards do Exist
- •Capacitor Ratings exist at: "0V" bias; "25°C"; "0" Hz frequency
- Lose Capacitance with Frequency
- Lose Capacitance with Temperature
- Lose Capacitance with Bias Voltage

A Few Words on Capacitors

Industry Standards do Exist

- •Capacitor Ratings exist at: "0V" bias; "25°C"; "0" Hz frequency
- Lose Capacitance with Frequency
- Lose Capacitance with Temperature
- Lose Capacitance with Bias Voltage

$$\Delta V_{out} = \frac{\Delta I_{load}}{8.BW.C_{out}}$$

Voltage Transient for a given load step, Loop BW, and Capacitor

Capacitance vs Bias Example: 10uF 0805, X5R, 10V

Monday, August 15, 2011

Capacitance vs Bias Example: 22uF 1206 X5R 6.3V

Monday, August 15, 2011

DCDC Converter Noise

- -Output Ripple
- -Radiated EMI
- -Conducted EMI

Output Voltage Ripple

Results from the output AC ripple current passing through the ESR and ESL of the output filter capacitor and the ESR and ESL of the PCB traces.

DCDC Datasheets Obfuscate the Truth About Ripple

This is the noise the load "sees"

12

- Radiated noise results from high di/dt AC currents flowing in the input current loop path
- Solution is to minimize the radius of the current loop
 - Radiated power decreases by r⁸

$$P_{RAD} = \eta \frac{\pi \left(\frac{2\pi r^{2}}{\lambda}\right)^{\frac{1}{2}}}{12} \left|I_{0}\right|^{2}$$

Conducted Noise Considerations

Results from AC currents flowing through the parasitic inductances in the input ground plane.

EP5388QI vs National LM3691 - Gin Terminal Common Mode Voltage

Memory Termination

Many Enterprise Class SSDs Require DDRx

High performance DDR DRAM requires termination

Common approach is to use Linear Termination

- Linear termination is only 50% efficient
- Fine if you don't have power and thermal limitations

Switch mode DCDC can be up to 95% efficient

 However, DCDC can be complex, expensive, and have large footprint

PowerSoC: a Possible Solution

- There are multiple vendors of PowerSoC
- Examples herein are Enpirion

What is a PowerSoC

Integrates:

- MOSFET Switches
- Gate Drive Circuitry
- Controller, and Protection
- Most Compensation Circuitry

18

• AND, the Magnetics

PowerSoC vs Discrete: Footprint Comparison

<u>PowerSoC</u>

Equivalent Discrete DCDC

Typically 1/4th to 1/8th the Discrete Footprint

PowerSoC vs Discrete: Footprint Comparison

<u>PowerSoC</u>

Equivalent Discrete DCDC

Typically 1/4th to 1/8th the Discrete Footprint

PowerSoC Addresses Noise Issues

- Package layout optimized for noise containment
- Input AC current loop very tight
- Output AC current loop very tight
- Package designed to minimize inpackage parasitic impedances.

20

On board decoupling on input loop

3A PowerSoC

4A PowerSoC

Conducted Noise Revisited

PowerSoC vs Discrete DCDC

PowerSoC: Stable, Optimized Performance

Inductor is fully characterized over entire operating range

Compensation network is matched to the inductor

Proprietary and Confidential

| 25 |

No inductor to design, evaluate, qualify, place, source

Proprietary and Confidential

25 |

- No inductor to design, evaluate, qualify, place, source
 - Fewer placements, improved assembly yield, improved field reliability

- No inductor to design, evaluate, qualify, place, source
 - Fewer placements, improved assembly yield, improved field reliability

No inductor to design, evaluate, qualify, place, source

Fewer placements, improved assembly yield, improved field reliability

PowerSoC is qualified as a complete power system

Proprietary and Confidential

No inductor to design, evaluate, qualify, place, source

- Fewer placements, improved assembly yield, improved field reliability
- PowerSoC is qualified as a complete power system
 - Reliability based on HTOL; measured power solution FIT=5.2

Proprietary and Confidential

No inductor to design, evaluate, qualify, place, source

- Fewer placements, improved assembly yield, improved field reliability
- PowerSoC is qualified as a complete power system
 - Reliability based on HTOL; measured power solution FIT=5.2
 - Discrete implementation given by sum of FITs ~40

No inductor to design, evaluate, qualify, place, source

- Fewer placements, improved assembly yield, improved field reliability
- PowerSoC is qualified as a complete power system
 - Reliability based on HTOL; measured power solution FIT=5.2
 - Discrete implementation given by sum of FITs ~40

No inductor to design, evaluate, qualify, place, source

- Fewer placements, improved assembly yield, improved field reliability
- PowerSoC is qualified as a complete power system
 - Reliability based on HTOL; measured power solution FIT=5.2
 - Discrete implementation given by sum of FITs ~40

Enpirion Layout Files available for easy CAD integration

Memory Termination: PowerSoC

	EV1330	Linear VTT
Total Solution Size	80	88
Efficiency at TDC	95%	50%
Power Loss	0.06W	0.9W
	0.84W	

PowerSoC Solves Many SSD DCDC Issues

- Very small footprint
- Low part count/fewer placemer
- Low ripple, low EMI
- High efficiency
- Fast transient response
- Up to 10x higher reliability
- Ease of design for fast TTM

Efficiency vs. Load Current @ Vin=3.3V

1 2 3 4 5

Load Current (A)

10.00

75%

70%

65% 65%

-

27

0

Proprietary and Confidential