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♦However,  It can present some of the biggest head 
aches:
• Electrical interfaces are limited in the amount of power available.

— Need to Increase Conversion Efficiency
• Standard & custom formfactors can be highly footprint 

constrained.
— Need to Decrease Power Footprint

• Switch-Mode DCDC converters ARE a source of noise.
— Need Low Ripple, Low Radiated EMI, Low Conducted EMI

• SSD technology is dynamic; power requirements change –
constantly
— Need Scalable Solutions; Minimize Component variation

• Time to Market can make winners and losers.
— Need Short Power Design Cycle
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Converter and Components
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Synchronous Buck Switch-Mode DC-DC

Input Filter Capacitor(s)
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Controller Circuitry
Protection Circuitry

Power MOSFETS (Switches)

Power Inductor

Output Filter Capacitor(s)

Compensation Network
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A Little About Inductors

♦ There are No Industry Standards 
• Each supplier has own proprietary design/materials

— Core material formulation
— Winding technique and conductor type
— Electrode material
— Baking method

♦Key Metrics
• DC Loss
• AC Loss
• Saturation Characteristic
• Frequency dependencies/Small signal

♦ Temperature dependencies
• DC Losses: resistivity
• AC Losses: skin effect, proximity effect,…
• Saturation Flux Density
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Inductor Characterization
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•Small Signal Parameters 
•DC Resistance; Variation over Temp, Bias, Load
• DC Power Loss vs Load Current
• AC Power Loss vs Volt Seconds Stress and Temp
• AC Power Loss vs Frequency and Temp
• Series Inductance vs Load Current
• Series Inductance vs Temp
• Impedance Magnitude and Phase vs Frequency
• Inductor Physical Dimension Analysis
• RoHS: Core, Conductor, Electrode Material Composition
• All of this is Different for Every Manufacturer

Inductor Characterization

  | 6 |
Monday, August 15, 2011



•Small Signal Parameters 
•DC Resistance; Variation over Temp, Bias, Load
• DC Power Loss vs Load Current
• AC Power Loss vs Volt Seconds Stress and Temp
• AC Power Loss vs Frequency and Temp
• Series Inductance vs Load Current
• Series Inductance vs Temp
• Impedance Magnitude and Phase vs Frequency
• Inductor Physical Dimension Analysis
• RoHS: Core, Conductor, Electrode Material Composition
• All of this is Different for Every Manufacturer

Inductor Characterization

  | 6 |
Monday, August 15, 2011



A Few Words on Capacitors

  | 7 |
Monday, August 15, 2011



•Industry Standards do Exist
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frequency
•Lose Capacitance with Frequency
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Voltage Transient for a given load step, Loop BW, and Capacitor
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Capacitance vs Bias Example: 10uF 0805, X5R, 
10V
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Capacitance vs Bias Example:  22uF 1206 X5R 
6.3V 
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DCDC Converter Noise
 -Output Ripple
 -Radiated EMI
 -Conducted EMI
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Output Voltage Ripple

♦ Results from the output AC ripple current passing through the ESR 
and ESL of the output filter capacitor and the ESR and ESL of the PCB 
traces.
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Output Ripple Waveform Capacitor Equivalent Circuit
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DCDC Datasheets Obfuscate the Truth About Ripple
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Datasheets show band 
limited waveforms

Here is the actual 
ripple for this part

This is the noise the load “sees”

20MHz Scope BW

500MHz Scope BW
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Radiated Noise Considerations
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Radiated Noise Considerations

♦ Radiated noise results from high di/dt AC currents 
flowing in the input current loop path

♦ Solution is to minimize the radius of the current loop
• Radiated power decreases by r8
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Conducted Noise Considerations

♦ Results from AC currents flowing through the parasitic 
inductances in the input ground plane.
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Common mode voltage measured on input ground terminal
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Memory Termination
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Many Enterprise Class SSDs Require DDRx

♦High performance DDR DRAM requires termination

♦Common approach is to use Linear Termination
• Linear termination is only 50% efficient
• Fine if you don’t have power and thermal limitations

♦ Switch mode DCDC can be up to 95% efficient
• However, DCDC can be complex, expensive, and have large 

footprint
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PowerSoC: a Possible Solution
• There are multiple vendors of PowerSoC
• Examples herein are Enpirion
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What is a PowerSoC

♦ PowerSoC is defined by PSMA

♦ Integrates:
• MOSFET Switches
• Gate Drive Circuitry
• Controller, and Protection
• Most Compensation Circuitry
• AND, the Magnetics
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PowerSoC vs Discrete: Footprint 
Comparison

PowerSoC Equivalent Discrete DCDC
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Typically 1/4th to 1/8th the Discrete 
Footprint
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♦ Package layout optimized for 
noise containment

♦ Input AC current loop very tight

♦ Output AC current loop very tight

♦ Package designed to minimize in-
package parasitic impedances.
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PowerSoC Addresses Noise Issues
PVIN

PGND

PGND

VO
U

T
On board decoupling on input loop
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PowerSoC vs Discrete Buck: Ripple 
Comparison

Discrete Buck
5Vin / 3.3Vout
3A Load

500MHz Bandwidth

PowerSoC 
5Vin / 3.3Vout
3A Load

500MHz Bandwidth
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PowerSoC CISPR 22 Class B Charts
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3A PowerSoC 4A PowerSoC
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Conducted Noise Revisited

♦ PowerSoC vs Discrete DCDC
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Common mode voltage measured on input ground terminal

Discrete DCDC

PowerSoC
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PowerSoC: Stable, Optimized Performance
♦ Inductor is fully characterized over entire operating 

range
♦Compensation network is matched to the inductor
♦ Yields “Super-Optimized” solution
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• BW   = 540 KHz
• Phase Margin  = 76.8 Deg
•Gain Margin = 16.8 dB 
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Ease of Design for Fast Time to Market
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Ease of Design for Fast Time to Market

♦No inductor to design, evaluate, qualify, place, source
• Fewer placements, improved assembly yield, improved field 

reliability

♦ PowerSoC is qualified as a complete power system
• Reliability based on HTOL; measured power solution FIT=5.2
• Discrete implementation given by sum of FITs ~40

♦ Enpirion Layout Files available for easy CAD integration
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Memory Termination: PowerSoC
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EV1330 Linear VTT

Total Solution Size 
(mm2)

80 88

Efficiency at TDC 95% 50%

Power Loss 0.06W 0.9W

0.84W 
savings

PowerSoC VTT
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PowerSoC Solves Many SSD DCDC Issues

♦ Very small footprint

♦ Low part count/fewer placements

♦ Low ripple, low EMI

♦ High efficiency

♦ Fast transient response

♦ Up to 10x higher reliability

♦ Ease of design for fast TTM

2mV/Div 2mV/Div
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