

System Design Catalysts for SSDs in Embedded Applications

Scott Phillips STEC, Inc.

F

Sh Memory Current Storage Hierarchy

DRAMs				Pros: Cons:	Fast access time (100ns-10us) Wear-resistant storage during heavy write workloads Non-persistent memory (data loss)
RAM-SSDs	Lower	Series and S	wer latency	Pros:	Fast access time (100ns-10us) Wear-resistant storage during heavy write workloads
SSDs	er Cost Per GB		ligher Performance & lo	Pros:	Fast access time 50us – 200us High throughput 10K – 200K Persistent media Wide capacity range for all storage needs High shock/vibration/temp resistance Low power consumption Small footprint for embedded apps
HDDs				Pros: Cons:	Highest capacity primary storage Slow access time (10ms range) Low performance Low shock/vibration/temp resistance High power consumption

Flash Memory Summit 2011 Santa Clara, CA

Lower power than HDD or "full-size" SSD Support smaller capacities than "full-size" SSD Support/Testing for embedded operating systems Meet criteria for Enterprise or Industrial SSD Typically smaller than traditional 2.5-inch drive

2.5" Hard Disk Drive

Flash Memory Summit 2011 Santa Clara, CA

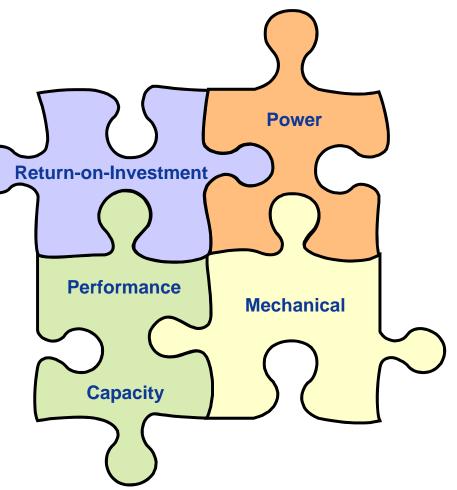
High transaction applications

Space-constrained systems where 2.5"/1.8" drives won't fit


Systems with **low power** requirements

Ruggedized applications

Lower capacity requirements (e.g. 2/4/8/16GB)


Performance

Capacity

Host Interface/Protocol

Environmental

Cost (return on investment)

Comparing Embedded SSDs to traditional HDDs and "full-size" SSDs nets cost advantages in specific embedded applications

Specification	2.5" HDD	Embedded SSD	2.5" SSD
Dimensions (mm)	100.2 x 69.8 x 9.5	54 x 39 x 4	100.2 x 69.8 x 9.5
Typical Capacity	200GB	16GB	50GB
Typical Throughput (random)	1MB/sec	30MB/sec	100MB/sec
Typical IOPs (random)	100	10,000	30,000
Typical Power Consumption	10W	2.5W	4W
Cost per GB / Total Cost	\$0.25 / \$50	\$10 / \$160	\$8 / \$400
Cost per IOPs (cost / IOPs)	\$0.50	\$0.02	\$0.02
Cost per MB/sec (cost / throughput)	\$50	\$5	\$4
Annual Power Costs (\$0.12/kWh) *	\$10.50	\$2.60	\$4.20

* Energy cost formula: wattage x hours used \div 1000 x price per kWh = cost of electricity

EXAMPLE: 16GB Slim SATA vs. 160GB 2.5" SATA HDD in random read test:

- IOPs: 8,000 vs. 100
- Throughput: 33MB/s vs. 450KB/s
- Power: 100mA vs 550mA
- Average 7 secs faster boot time
- ~60% smaller, ~90% lighter

Slim SATA better in every metric leading to higher productivity and greater ROI

Slim SATA (16GB)	2.5" HDD (160GB)					
\$10	\$0.28					
\$0.02	\$0.44					
\$4.85	\$19.33					
Assuming \$0.10/GB in productivity (revenue):						
118.8	1.6					
\$11.88	\$0.16					
7.4%	0.37%					
	(16GB) \$10 \$0.02 \$4.85 in productivity 118.8 \$11.88					

16GB Slim SATA vs. 2.5" 5400rpm SATA HDD in shock, vibration, temperature, etc.:

	Slim SATA	<u>2.5" HDD</u>
Shock:	1000G	350G
Vibration:	20G	0.004G
Altitude:	80,000 ft	10,000 ft
Temperature:	-40°C to 85°C	0°C to 60°C
Humidity:	5%-95%	8%-95%
MTBF:	2,000K hrs	300K hrs

Slim SATA better in every metric leading to higher reliability and productivity and greater ROI

- Visit booth# **300** for a demo and more information
- "Run the numbers" and see how Embedded SSDs can benefit your application
- Make a list of key criteria e.g. technology, support, etc. do the research, and compare options
- Drop us a line at: <u>EmbeddedSSD@stec-inc.com</u> with any questions

THANK YOU!

Flash Memory Summit 2011 Santa Clara, CA