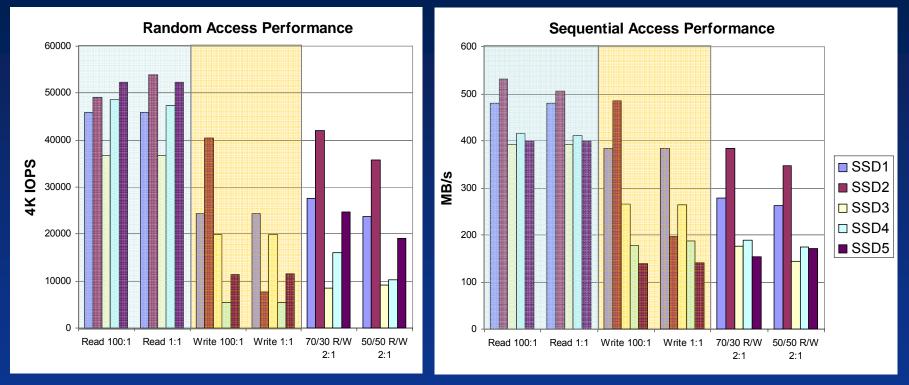


Gary Tressler and Dean Sciacca IBM Corporation

Agenda

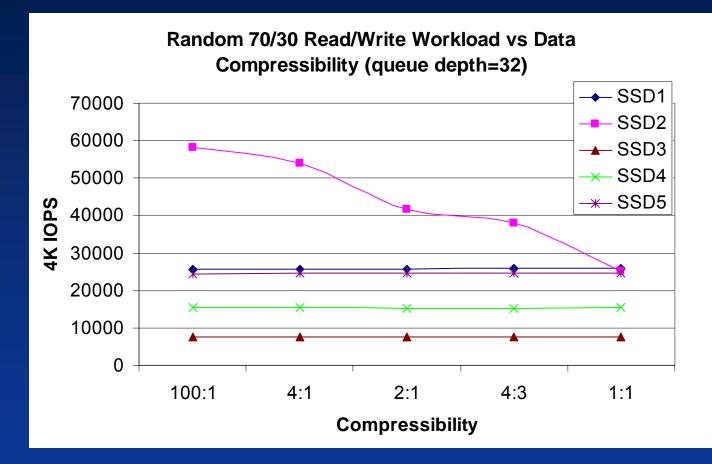
- Introduction
- Methodology
- Performance
- Response Time
- Power Consumption
- Write Amplification
- Life Span
- Summary


Introduction

- IBM is driving MLC SSD adoption for Enterprise storage
- Five industry Enterprise MLC SSDs were characterized
 - SATA3 or SAS2 interface (6Gbps)
 - 200 or 400GB usable MLC Flash capacity
- SSDs evaluated were prototype or engineering samples
 - Firmware may not have been fully optimized

Enterprise SSD Characterization Methodology

- Characterization Platform
 - PC with high performance CPU, DDR3 DRAM
 - Windows 7 (64-bit) operating system
 - LSI 9212 host bus adapter
- Apply VDBench 5.03 Exerciser
 - SSDs in raw mode (no file system)
 - Use 4KB aligned writes/reads (512B mode)
 - 4KB transfer size for random workloads
 - 128K transfer size for sequential workloads
- Preconditioning
 - Initial 24-hour write random/sequential workload
 - Each individual measurement has its own preconditioning cycle
 - Preconditioning durations are based on the time necessary for SSD performance to stabilize against a given workload
 - Each measurement is the average performance for an extended interval



- Random reads observed in the 35-55KIOPs range, and random writes in the 5-40KIOPs range
- Sequential reads observed in the 400-525MBps range, with sequential writes in the 150-480MBps range
 - Notable performance improvements observed over prior generation
- Mixed read-write mode performance not optimized in certain cases

Note: Data compression ratios defined for each test (e.g.: 100:1, 1:1 and 2:1)

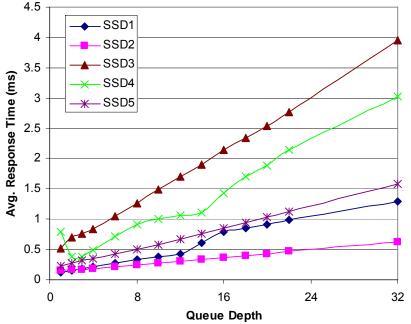
SSD Random Performance vs. Data Compressibility

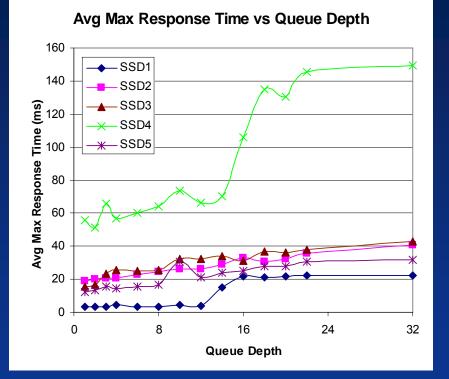
Most SSDs characterized showed consistent performance vs. data compressibility

- Data compression techniques now under widespread development across industry

Santa Clara, CA August 2011

SUMMIT




SSD Response Time Characterization

- SSD response time is critical for overall Enterprise system performance and customer satisfaction
- A transaction type workload is applied
 - Mixed random read and write, 4KB and 8KB
- Response time is measured as a function of queue depth
 - Average maximum response time is the average of the maximum response times in thirty 10-second intervals
- Competitive response times require optimization of latency and frequency of various SSD background operations
- Response times are not adequately specified
 - Average read/write and average maximum read/write response time parameter specifications would provide users with valuable information

Average and Average Maximum Response Time vs. Queue Depth

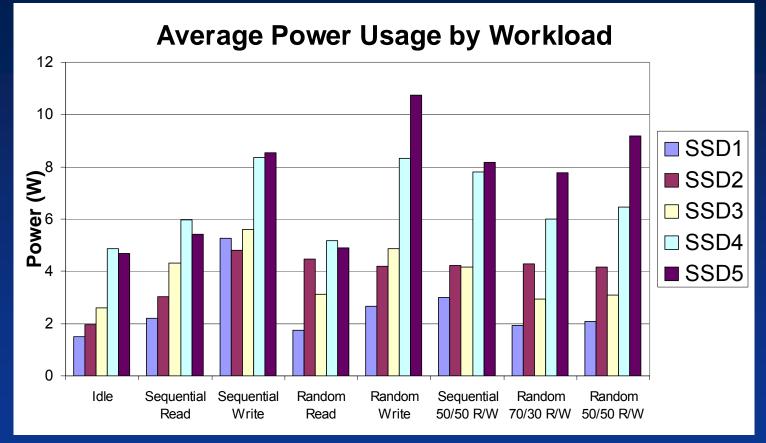
Average Response Time vs Queue Depth

 Large variation in average response times observed – further optimization required

Note: Data compression of 5:1 applied Santa Clara, CA August 2011

SUMMIT

 Frequency and latency of SSD non-data operations are key to reducing average maximum response times


Enterprise SSD Power Consumption

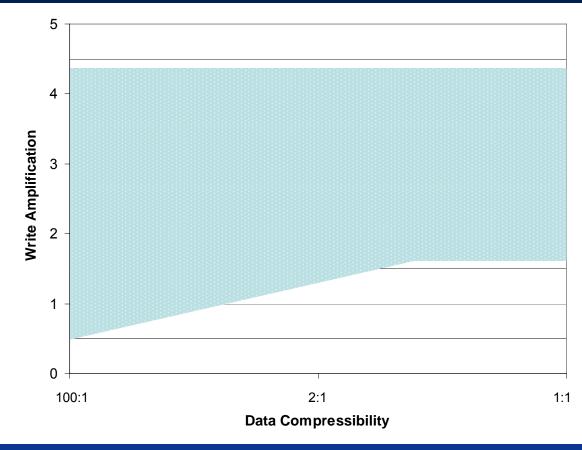
- Power consumption is an increasingly important SSD attribute
 - Existing system requirements limit available power
 - Heat generation reduces intrinsic component reliability and can cause SSDs to fault
- SSD power is rising with improving SSD performance
 - Primarily due to higher Flash bandwidth and increasing number of active Flash die during write operations
 - Ongoing challenge require innovation
 - Thermal interface materials
 - Advanced throttling techniques

Enterprise SSD Power Consumption by Workload

SSD write power generally 1.5X higher than read power
High idle power observed in certain cases

Santa Clara, CA August 2011

Note: Data compression of 2:1 applied


SSD Write Amplification

- SSD write amplification (WA) is the ratio of amount of data written to Flash to the amount of write data requested by the host
 - Enterprise MLC can sustain an order of magnitude more program-erase cycles than standard consumer grade MLC
 - Example 30K or greater Enterprise MLC vs. 3K consumer MLC
- WA is a key SSD controller architectural parameter to assess Enterprise SSD lifespan for particular usage cases

Disk Life Span = $\frac{P/E \text{ cycles } * \text{ Drive Capacity(MB)}}{WA * Write \text{ Performance (MB/s) } * \text{ Duty Cycle}}$

Enterprise SSD Write Amplification (WA)

Note: Results reflect random access

• View of industry Enterprise SSD write amplification status (8 suppliers)

• WA is a critical SSD architecture parameter with inverse relationship to life span

Enterprise SSD Life Span Characterization

- Numerous industry Enterprise SSDs under long term continuous write testing at IBM
 - Effort in early stage initiated 1Q11
- Approx. 10% of specified SSD usable life evaluated to date
 - Results reflective of specified life span expected by 3Q12
 - Monitoring Flash block retirement vs. time
 - No clear method identified for accelerated testing
- No observed SSD performance changes thus far

Summary

- Suppliers are now developing next generation Enterprise MLC SSDs targeted at 6Gbps (SATA3/SAS2)
 - Notable performance improvements observed over prior generation
- SSD response time is critical metric for overall Enterprise system performance and customer satisfaction
 - Opportunities for improved specifications exist
- SSD power characteristics have increased significantly and will present an ongoing systems challenge
 - Thermal mitigation innovation required
- Write amplification is a key controller architectural parameter to assess SSD life span for particular usage cases
 - With increased performance, write amplification and capacity must scale to maintain life span targets