

Low Density Parity Check (LDPC) Codes and the Need for Stronger ECC August 2011

Ravi Motwani, Zion Kwok, Scott Nelson

Agenda

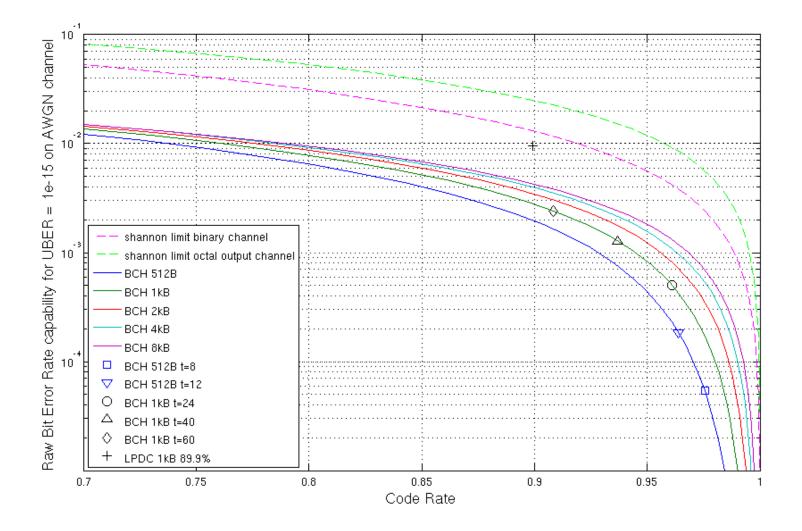
- NAND ECC History
- Soft Information
 - What is soft information
 - How do we obtain soft information?
 - How do we represent soft information?
- LDPC Decoding
 - Min sum decoder
 - How do we use soft information for decoding

NAND ECC History

Intel / Micron NAND ECC

- 50nm MLC : 512B t=8
- 34nm MLC : 512B t=12
- 25nm MLC : 1024B t=24
- 25nm 3bit/cell : 1024B t=60
- 20nm MLC : 1024B t=40
- BCH codes are about to run into a brick wall . . .

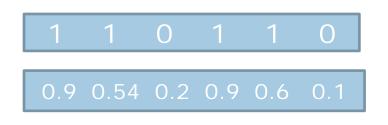
NAND ECC Evolution



Soft Information

What is soft information?

- Hard information: 1 or 0
 - channel output is best guess of original bit
- Soft information: Probability of a bit begin 1 or 0
 - Measure the reliability of each bit from channel
 - Decoder can give proper weight to the input information depending on its reliability

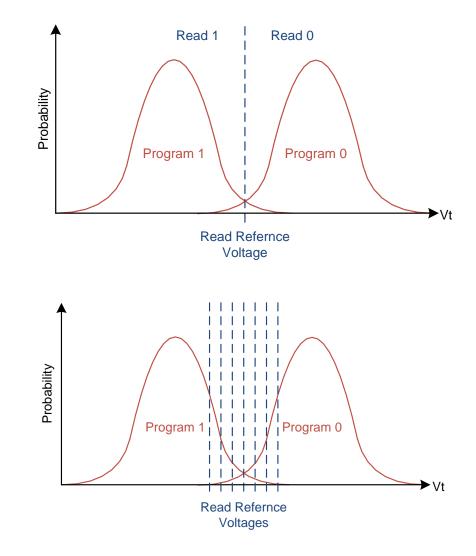


Hard input decoding Soft input decoding

Soft Information

How do we obtain soft information?

- Read oversampling
- Binary input x_i (Program 0 or 1)
- Octal output y_j



Hard vs Soft Channel

- NAND Programming step is common to hard and soft channels
 - no change in the write path
 - can choose between hard or soft information at read time
- Hard Read
 - Faster read performance
 - Shorter NAND I/O time
- Soft Read
 - Higher Information rate Decoder can handle higher RBER

Log Likelyhood Ratio (LLR)

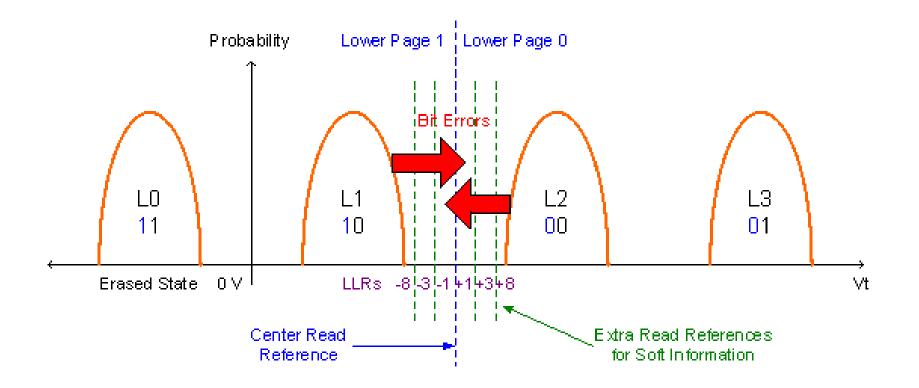
- Symbol *x_i* is transmitted
- Symbol y_j is received

Integer LLR representation

- Simple hardware implementation
- Good Dynamic Range
- Good precision near p=0 and p=1
- Easy to add LLRs
 - Addition is multiplication of probabilities
 - combine two independent LLRs that give independent information about the same source variable x

$$LLR(y_{j}) = \ln \frac{p(x = 0 | y_{j})}{p(x = 1 | y_{j})}$$
$$= \ln \frac{p(y_{j} | x = 0)}{p(y_{j} | x = 1)}$$

Soft information readout with LLRs



LDPC codes

LDPC = Low Density Parity Check

- H matrix is sparse (less than 1% of matrix is 1s, remainder is 0s)
- Many ways to construct H matrix

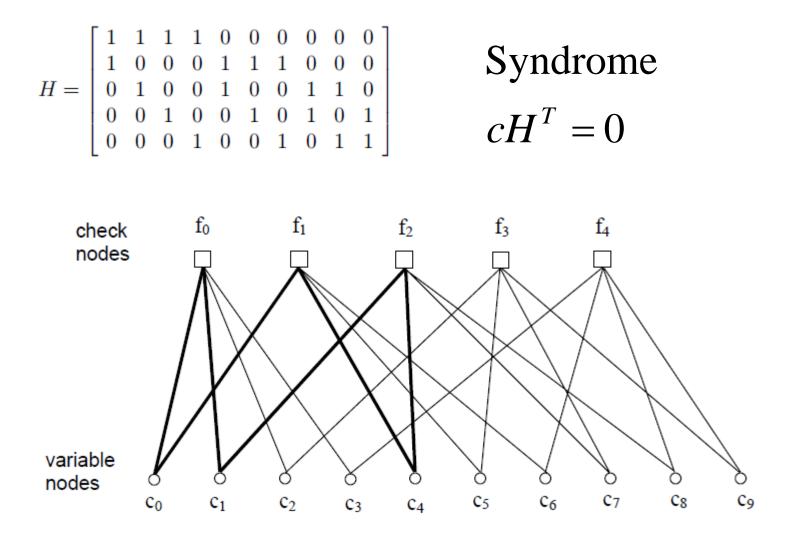
LDPC Terminology

- Column Weight = # of 1s in each column of the H matrix
- Row Weight = # of 1s in each row of the H matrix
- Regular LDPC Code = All columns / rows have the same weight
- Tanner graph = a bipartite graph representing the H matrix

H matrix

Codeword Size	10
Parity Check Equations	5
Row Weight	4
Column Weight	2

Tanner Graph



LDPC information exchange

Parity check equation:

$$c_0 + c_1 + c_2 + c_3 = 0$$

Extrinsic information:

$$c_3 = c_0 + c_1 + c_2$$

Check Node Update

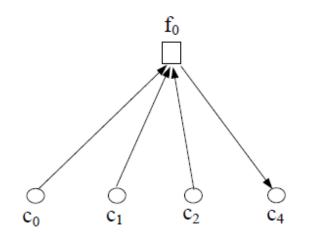
 $e(c_3) = \Psi(LLR(c_0), LLR(c_1), LLR(c_2))$

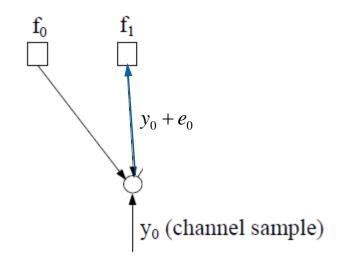
Bit (variable) Node Update:

$$LLR(c_3) = LLR(c_3) + e(c_3)$$

Min-sum decoder

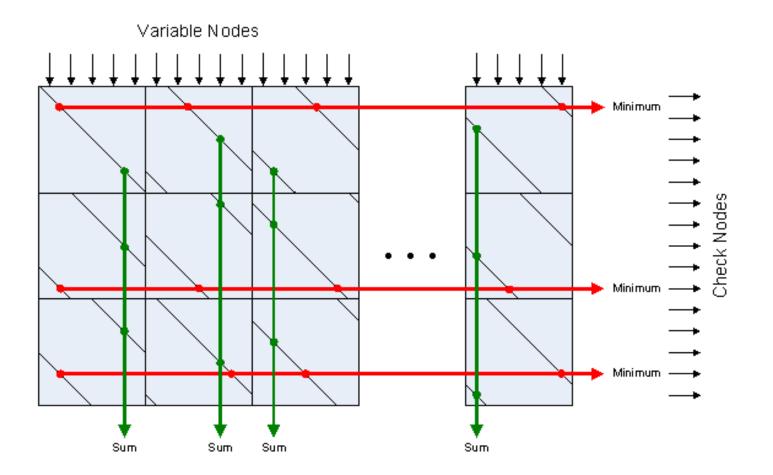
 $\Pi_{i=0,1,2} \operatorname{sgn}(y_i) \min(|y_0|, |y_1|, |y_2|)$





Check node update Bit node update

Quasi-cyclic H matrices



Drawbacks with LDPC

- Cannot mathematically characterize the performance
 - have to do simulation / emulation to measure code performance
 - 10¹⁶ or more bits to measure desired UBER
 - unlike BCH codes which are easy to predict
- Computationally intensive.
 - More information to process (soft input)
- Code-construction is challenging
 - Error floors may exist

Summary

- Soft information increases the channel capacity at the same RBER
 - Can choose between hard and soft information at readout time to tradeoff speed for decoding performance
 - Soft information represented using Log Likelihood Ratio (LLR)
- LPDC Min-Sum decoder can take advantage of soft information
 - Same decoder can use hard input or soft input
 - Higher channel capacity leads to better code performance at same RBER

References

[1] C. E. Shannon, "A Mathematical Theory of Communication," *Bell System Technical Journal*, 27: 379-423, 623-656, July, October 1948.

[2] I. S. Reed and G. Solomon, "Polynomial Codes over Certain Fields," *J. Soc. Ind. Appl. Math.*, 8: 300-304, June 1960.

[3] R. C. Bose and D. K. Ray-Chaudhuri, "On a Class of Error Correcting Binary Group Codes," *Information and Control*, 3: 68-79, March 1960.

[4] A. J. Viterbi, "Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm," *IEEE Trans. Inform. Theory*, 13: 260-269, April 1967.

[5] C. Berrou, A. Glavieux, and P. Thitimajshima, "Near Shannon Limit Error-Correcting Coding and Decoding: Turbo Codes," *Proc. IEEE Intl. Conf. Communications (ICC 93)*, pp. 1064-1070, May 1993.

[6] R. G. Gallager, Low-Density Parity-Check Codes, M.I.T. Press, Cambridge, Mass., 1963.

[7] D. J. C. MacKay and R. M. Neal, "<u>Near Shannon limit performance of low density parity check codes</u>," *IEE Electronics Letters*, 32: 1645-1655, Aug. 1996.

[8] M. Fossorier, M. Mihaljevic, and H. Imai, "Reduced complexity iterative decoding of low-density parity check codes based on belief propagation," *IEEE Trans. Communications*, 47: 673-680, May 1999.

[9] X. Y. Hu, E. Eleftheriou, and D. M. Arnold, "Progressive edge-growth Tanner Graphs", *IEEE GLOBECOM*, pp. 995-1001, Nov. 2001.

[10] Juntan Zhang, M. Fossorier, D. Gu, and Jinyun Zhang, "Improved Min-Sum Decoding of LDPC Codes Using 2-Dimensional Normalization," *IEEE GLOBECOM*, pp. 1187-1192, Nov. 2005.

[11] E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968.

