

Extending Flash Memory Lifetime Using Coding Techniques

Ryan Gabrys Lara Dolecek

Flash Memory Summit 2011 Santa Clara, CA

- Difficulties with flash
- Write once memory codes
- Error correction codes
- Conclusion

- Erases can be more detrimental than programs in flash memory since erases are performed at the block level
- Multilevel flash memory cells are exponentially more error prone than single level cells

[1] A. Jagmohan et al., "Adaptive endurance coding for NAND Flash," IEEE Globecomm 2010.

Flash Memory Summit 2011 Santa Clara, CA

Memory Model

The memory state is modeled as a vector \mathbf{y}^j of length n where j is the current write or generation, each position can have q values $\{0, 1, 2, \ldots, q - 1\}$. At generation j, encoder writes message M_i to memory by updating y^{j-1} to y^j satisfying WOM-constraint where $\mathbf{y}^j \geq \mathbf{y}^{j-1}$. Decoder sees y^j .

Definition

If M_j codewords can be represented at generation j, then generation j has rate $\frac{1}{n} \log(M_j)$. Sum rate is the sum of rates across generations.

Fixed-rate and unrestricted-rate codes

- If we write the same amount of information at each generation, the WOM-code is said to be a fixed rate WOM-code.
- Otherwise, the code is an unrestricted rate WOMcode.

Rivest and Shamir write twice code

Information	First Generation	Second Generation
00	000	111
01	001	110
10	010	101
11	100	011

[1] R.L. Rivest, A. Shamir "How to reuse a write-once memory" IEEE Communications Letters, 2003. Vol. 55, No. 1-3, pp. 1-19 Dec. 1982.

Capacity results for unrestricted rate

[1] F. Fu and A.J. Han Vinck, "On the Capacity of Generalized Write-Once Memory with State transitions Described by an Arbitrary Directed Acyclic Graph," IEEE Trans. Inform. Theory, vol. 45, no. 1, pp. 308-313, Sept. 1999.

Rates achieved for two writes

q	Achieved Sum-rate	Capacity	Achieved/Capacity
4	2.9856	3.3219	0.8988
8	4.4784	5.1699	0.8662
16	6.3083	7.0875	0.8901
32	8.3083	9.0444	0.9186
64	10.3083	11.0224	0.9352
128	12.3083	13.0112	0.9460

[1] R. Gabrys et al., "Non-binary WOM-Codes for Multilevel Flash Memories," Information Theory Workshop 2011.

Rates achieved for q=4

t	Achieved Sum-rate	Capacity	Achieved/Capacity
2	2.9856	3.3219	0.8988
3	3.2200	4.3219	0.7450
4	3.7128	5.1293	0.7238
5	3.9328	5.8074	0.6772
6	4.2594	6.3923	0.6663
7	4.3394	6.9069	0.6283

[1] R. Gabrys et al., "Non-binary WOM-Codes for Multilevel Flash Memories," Information Theory Workshop 2011.

Rates achieved for q=8

t	Achieved Sum-rate	Capacity	Achieved/Capacity
2	4.4784	5.1699	0.8662
3	4.8300	6.9069	0.6993
4	5.5692	8.3663	0.6657
5	5.8992	9.6294	0.6126
6	6.3891	10.7448	0.5946
7	6.5091	11.7448	0.5542

[1] R. Gabrys et al., "Non-binary WOM-Codes for Multilevel Flash Memories," Information Theory Workshop 2011.

Observed error patterns in TLC flash memory

• Data was measured from 16 blocks of a TLC chip split evenly across the 2 planes.

 The chip was repeatedly rewritten with random data and error measurements were taken every 100 cycles.

- Patterns
 - Approximately 69% were in same direction.
 - Errors were limited in magnitude.
 - Errors not bursty or persistent.

Only 4 states exhibit a BER more than 10^-5

Flash Memory Summit 2011 Santa Clara, CA

Programmed state	Errored state	Percentage of errors
000	010	0.2467
001	001	0.2444
1 <mark>1</mark> 1	1 <mark>0</mark> 1	0.0820
111	11 <mark>0</mark>	0.0807
000	1 00	0.0669
011	001	0.0556
100	1 <mark>1</mark> 0	0.0550
011	010	0.0547
100	10 <mark>1</mark>	0.0540
111	<mark>0</mark> 11	0.0217

- Instead of providing ECC that guards against ALL types of error patterns, target errors that flip a prescribed number of bit flips.
- Reduces the redundancy of the code resulting in more efficient error correction codes

- Suppose we have q=32 levels and we want to correct all errors that flip at MOST 2 bits.
- Naïve Scheme: map the symbols to an ECC whose alphabet has cardinality 32.
- Better idea: map the symbols to a code with symbol cardinality 16.

• For the TLC data collected, we were able to correct 99.17% of the errors over the lifetime of the chip.

- Used a mapping into an alphabet of size 4.

 More generally, suppose the probability that given 2ⁿ¹ symbols a bit flip occurs is p1.
Suppose we have n symbols and n1 and n get large. We want to correct t such symbol errors.

- The ratio of the naïve encoding to the redundancy of this scheme when optimal block codes are used is: 2^{tn1(1-H(p1))}, where H is the binary entropy function.
- For fixed p1≠1/2 as n1 continues to increase this scheme will yield more efficient codes.

- Bit error rates are continuing to increase with each generation of flash memory.
- Techniques for controlling this trend include write once memory codes and error correcting codes.
- Efficient error correction code should take advantage of the unique patterns observed.