Session 306: Future of Phase Change Memory

Altera Mike Strickland

Agenda

- Current State
- Value Proposition
- Technology Ramp Model
- Adoption Barriers

Phase Change Memory (PCM) Overview

	DRAM	\mathbf{PCM}	NAND Flash
Read energy	0.8 J/GB	1 J/GB	1.5 J/GB [28]
Write energy	1.2 J/GB	6 J/GB	17.5 J/GB [28]
Idle power	${\sim}100~{ m mW/GB}$	${\sim}1~{ m mW/GB}$	1-10 mW/GB
Endurance	∞	$10^6 - 10^8$	$10^4 - 10^5$
Page size	64B	64B	4KB
Page read latency	20-50ns	$\sim 50 { m ns}$	$\sim 25~\mu{ m s}$
Page write latency	20-50ns	$\sim 1~\mu{ m s}$	$\sim 500~\mu{ m s}$
Write bandwidth	\sim GB/s per die	50-100 MB/s per die	5-40 MB/s per die
Erase latency	N/A	N/A	$\sim 2~{ m ms}$
Density	$1 \times$	2-4 imes	$4 \times$

Source: Chen, Gibbons, Nath, CIDR '11, Intel, Microsoft

- Reads close to DRAM
- Write latency 10X+ worse
 - But 100X+ better than NAND flash
- 100X+ better endurance
- Low idle power vs. DRAM

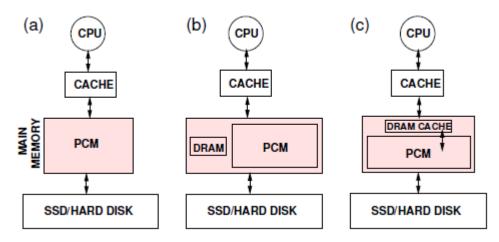
Value Proposition

- Lower Idle Power: for mobile
- Hybrid Enterprise Flash Cache Controller
- System Memory Hierarchy
- Flash Cache Endurance for Enterprise:
 - Better endurance for high IOPS environments
 - MLC NAND endurance getting worse in new process geometries

Hybrid Enterprise Flash Cache Controller PCM and NAND

PCM for Metadata/logs

- Block table
- Partial writes
- Garbage collection
- Hot data tagging


PCM for RAID parity

- Fast
- Less ECC
- Better endurance

PCM write thru cache

System Memory Hierarchy

Source: Chen, Gibbons, Nath, CIDR '11, Intel, Microsoft

O/S is DRAM aware: (b)

- Also "storage class memory"
- Application written to take advantage of it
- DRAM cache hidden: (c)

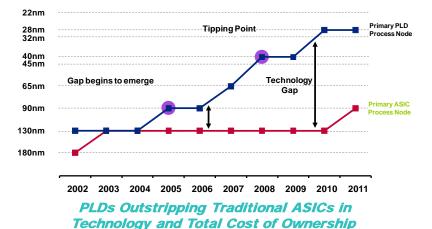
Technology Ramp

Today: mobile

Shorter term:

- Customer prototyping within a year
- Hybrid enterprise flash cache controllers
- High transaction rate enterprise flash cache

Longer term:


- General enterprise flash cache replacement
- Applications which are DRAM and PCM aware

Adoption Barriers

Fast innovation

- Hybrid controller algorithms
 - What is hot, what goes where
 - Partial writes, write thru, ...
- Uncertain forecast
- Need fast TTM
- Differentiation
 - Dedupe, hybrid algorithms, etc.
- High ASIC dev. costs
 - Increasing technology gap
 - vs. FPGA
 - 8G SerDes PHY
 - Usually on 40 nm
 - PCIe Gen3, 12G SAS

Thank You

