NVMe™ Lessons Learned

Deploying NVMe™ Flash in Real Systems

Facilitated by Tom Heil, Senior Systems Architect & Distinguished Engineer, Broadcom
Forum A-12: NVMe and PCIe SSDs
Agenda

- Introduction
- Panel Member Presentations
- Q&A
NVM Express® Storage Genesis

- NAND Flash in Mainstream IT
- PCIe Flash Host Adapters
- Standard Storage-optimized PCIe Form Factors: U.2, M.2
- Standard Flash-optimized Storage Protocol: NVMe™

This is just the beginning ...
Challenges Enabling NVMe™ Across the Storage Infrastructure

• PCIe signal routing, power, thermal, clocking
• Cabling: inside the box > box-to-box
• Hot-plug serviceability: synchronous > asynchronous
• Manageability: device > device bay > enclosures
• Performant, SSD-optimized Data Protection: RAID & replication
• High Availability Dual-Domain Topologies
• Storage sharing: sub-rack > rack > data center > cross geography
• Creative M.2 use models
Gary Kotzur
Executive Director / Senior Distinguished Engineer
Platform Solution Considerations

- Industry
- Standards
- Drive Metrics
- Platform
NVMe™ SSD Drive History

End-User Needs
- Front Access
- Hot-plug ability
- Form-Factor(s)
 - Standard Form-factor
 - Higher power
- Connector
 - Standard
 - Multiple lanes
 - Backward Capability
 - No active backplane devices
- Protocol
 - Industry standard
 - Inbox
 - High Performance
- Management

Solution
- 2.5” 15mm FF
- 25W power envelope
- SFF-8639 (U.2 profile)
 - x4 or x2/x2 ports PCIe
 - x2 SAS or x1 SATA
- NVMe protocol

Benefits
- High performance of PCIe
- Hot Serviceability
- Compatibility with 2.5" SAS/SATA
- 25W power envelope
- NVMe: higher performance
- Open driver with inbox support
- Reduce component counts
Platform Solution

Challenges
- Performance balance
- Power
- Thermal
- Mechanical
- System Management
- Serviceability
- Reliability
- Availability
- Security
- Co-existence with SAS/SATA
- Connectivity options
- Clocking
- Resets
- Dual-port
Chris Petersen

Hardware Systems Architect

facebook
NVMe™ System Objectives

➢ Modular and Flexible

➢ Scalable

➢ Efficient
Challenges and solutions

• Open source + Surprise hot-plug
 • NVMe and PCIe Advanced Error Reporting (AER) drivers
 • Downstream Port Containment (DPC) driver
 • All 1’s completions
 • NVMeCLI
Challenges and solutions

• **Cabling**
 • Mini-SAS HD cables with full sideband

• **M.2**
 • Add hot-plug and thermal management
Hot Tier Pooled Storage

Don Faw
Principal Engineer, Intel Corp
Rack Scale Design Overview

- User-Defined Performance
- Maximum Utilization
- Interoperable Solutions
Intel® RSD Vision

Management Layer across the PoD

POD

Pooled Systems

- JBOF Storage Pool
 - Direct Attached PCIe
 - Very Low Latency (~100s ns + Media)
 - Full BW capability
 - IOPS driven
 - 8-16 node Radix typical

- Hot Data Tier

- DAS Pool
 - Full BW capability
 - IOPS driven
 - 8-16 node Radix typical

- NVMe Tier

- NVMe Over Fabric Storage Pool
 - Large Radix
 - Cap & performance driven
 - BW limited by fabric
 - Latency (<10us + Media)

- Cold Storage Tier

- Lower Latency

- Lower Cost / Higher Capacity

- Improve applications performance using low latency media.
Hot Tier JBOF

24 NVMe SSDs (Front Panel Accessible)

- Dual Port SSD Active-Active
- Independent paths to SSD via multiple switches.
- Serviceable Modular Switch module.

- x2 Provides more efficient connectivity model, Flat Topology
- Each host port has access to all SSD

12x4 PCIe Host Connections

Flash Memory Summit 2016
Santa Clara, CA
Challenges

• **Multi host connection**
 - Lots of Bulky cables vs drive serviceability
 - Keep cables stationary if possible, reduce cable mgt
 - SSD density vs serviceability, Font panel accessibility
 - Host radix within the rack
 - Multiple JBOF pools/rack vs ganging PCIe switches
 - NVMe Over Fabric for larger radix, multi-rack
 - Host Clocking requires SRIS
 - Repeaters to drive PCIe cables need SRIS capability

• **Drive telemetry**
 - Allocation of storage resources based on drive perf parameters
 - R/W BW perf/namespace, QoS, OOB accessible
Overall E8 System Objective

- Very high density
- Latency on par with local NVMe
- Extract the full performance of the SSDs
- Easy to use & highly scalable
- Tier-1 reliability
- Rich feature set
- Cost-effective and low TCO
Dual controller NVMe™ architecture

Highly Available Spec

- No SPOF
- Passive Midplane
- Power Control/Protection
- MI I/F
- Node 2 Node Communication
Node concept NVMe™ Dual controller

Node Spec
- QPI Overhead
- Networking Vs. SSD BW
- BMC Mngmt.
- SR/SI of NVMe SSD
- Error recovery

C610 Chipset

BMC

CPU 0

PCIe Gen3 Switch

RDMA NICs

PCIe Gen3

QPI

CPU 1

PCIe Gen3 Switch

RDMA NICs

PCIe Gen3

QPI

SSD1

SSD2

SSD3

SSD4

SSD12

SSD13

SSD14

SSD24

Flash Memory Summit 2016
Santa Clara, CA

*SR/SI – Surprise removal / Surprise insertion
Future PCIe Fabric with NVMe™

Node Spec

Peer 2 Peer

Flash Memory Summit 2016
Santa Clara, CA
E8 System Challenges

- PCIe physical layer with HA enclosure (backplane)
- Power/Reset sequence in dual port environments
- SI & SR of controller and NVMe devices
- BIOS support for unexpected errors during bootup
- Cooling, Power & power protection

*SR/SI – Surprise removal / Surprise insertion
Tim Emami

Technical Director

NetApp®
All-Flash Arrays need “Value” Dual-Ported NVMe™ SSDs

- **Parity Raid Economics**
 - lowest $/GB ("Data-Center grade" NAND)
 - Aggregated capacity and performance per node
 - “Repair-in-place” mechanisms for hi-cap SSDs

- **“Modest” peak performance**
 - Reduce latency at lower concurrencies
 - Throughput improvements over 12G SAS

- **“Hi-Availability” configurations with no SPOF**
 - Reliable dual-ported NVMe
 - PI and SGL support
 - NS Reservations
 - Robust management infrastructure
 - NVM-MI development is now under-way

Flash Memory Summit 2016
Santa Clara, CA
NVMe-oF™ (NVMe™ over Fabrics) – Overlaps with AFAs

- DASD created under-utilized "Islands of Flash"
 - NVMe-over-Fabric expansion allows dynamic provisioning of Compute to Flash ratio

- RDMA enabled Fabrics (IB, RoCE..) dramatically reduce the cost of remote vs local access
 - Addresses OS bottlenecks with traditional Block interfaces for AFAs
 - NVMe-over-Fabric enables “scale-up” expansion

- Needs “Value” Dual-Ported NVMe SSDs plus;
 - Controller Memory Buffer
 - SR-IOV/Multi NS
 - SRIS/NRIS
Traditional Enterprise “Scale-up” Storage architectures require an “Enclosure Management Plane”
 - Physical/Protocol
 - SW/Logical

SAS was meant for expansion and included a SMP/SES management overlay

NVMe started life as a “fast path” interconnect for locally attached NVM

NVMe-MI is meant to close the management gap
 - Mix of requirements from “Server” and “Storage” folks..
 - SMBus, PCIe “In-Band”, Ethernet
 - NVMe-MI command set
 - MCTP binding..?
 - Needs some processing power/SW in the enclosure
 - MI Standard is still evolving (e.g. PD pin..)
Hybrids remain relevant, but..

- Performance optimized SFF HDDs are being displaced by SSDs
- Capacity optimized LFF HDDs offer the lowest bit cost for colder data
- Tiering remains relevant but; “Hybrid” implies a very different mix of devices/media
 - Not about “IOPs Efficiency” anymore..
 - The right data on the right media; to reduce the Total Cost Of Ownership
Panel Members

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Company</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tom Heil</td>
<td>Senior Systems Architect Distinguished Engineer</td>
<td>Broadcom</td>
<td>tom.heil@broadcom.com</td>
</tr>
<tr>
<td>Gary Kotzur</td>
<td>Executive Director/Senior Distinguished Engineer</td>
<td>Dell</td>
<td>Gary_Kotzur@dell.com</td>
</tr>
<tr>
<td>Chris Petersen</td>
<td>Hardware Systems Architect</td>
<td>Facebook</td>
<td>cpetersen@fb.com</td>
</tr>
<tr>
<td>Don Faw</td>
<td>Principal Engineer, Platform Architect</td>
<td>Intel</td>
<td>donald.l.faw@intel.com</td>
</tr>
<tr>
<td>Ziv Serlin</td>
<td>Director System Architecture</td>
<td>E8 Storage</td>
<td>ziv@e8storage.com</td>
</tr>
<tr>
<td>Tim Emami</td>
<td>Technical Director</td>
<td>Network Appliance</td>
<td>Tim.Emami@netapp.com</td>
</tr>
</tbody>
</table>
Q&A

Thank You!